Quantum deformation of conformal symmetry in N = 4 super Yang - Mills theory

نویسنده

  • I. N. McArthur
چکیده

In gauge theories, not all rigid symmetries of the classical action can be maintained manifestly in the quantization procedure, even in the absence of anomalies. If this occurs for an anomaly-free symmetry, the effective action is invariant under a transformation that differs from its classical counterpart by quantum corrections. As shown by Fradkin and Palchik years ago, such a phenomenon occurs for conformal symmetry in quantum Yang-Mills theories with vanishing beta function, such as the N = 4 super Yang-Mills theory. More recently, Jevicki et al demonstrated that the quantum deformation of conformal symmetry sheds light on the nature of the AdS/CFT correspondence. In this paper, we derive the conformal Ward identity for the bosonic sector of the N = 4 super Yang-Mills theory using the background field method. We then compute the leading quantum deformation of the conformal transformation for a specific Abelian background which is of interest in the context of the AdS/CFT correspondence. In the case of scalar fields, our final result agrees with that of Jevicki et al. The resulting vector and scalar transformations coincide with those which are characteristic of a D3-brane embedded in AdS5 × S 5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum metamorphosis of conformal symmetry in N = 4 super Yang - Mills theory

In gauge theories, not all rigid symmetries of the classical action can be maintained manifestly in the quantization procedure, even in the absence of anomalies. If this occurs for an anomaly-free symmetry, the effective action is invariant under a transformation that differs from its classical counterpart by quantum corrections. As shown by Fradkin and Palchik years ago, such a phenomenon occu...

متن کامل

Plane - wave Matrix Theory from N = 4 Super Yang - Mills on R ×

Recently a mass deformation of the maximally supersymmetric Yang-Mills quantum mechanics has been constructed from the supermembrane action in eleven dimensional plane-wave backgrounds. However, the origin of this plane-wave matrix theory in terms of a compactification of a higher dimensional Super Yang-Mills model has remained obscure. In this paper we study the Kaluza-Klein reduction of D = 4...

متن کامل

A Test of the AdS/CFT Duality on the Coulomb Branch

We consider the N = 4 SU(N) Super Yang Mills theory on the Coulomb branch with gauge symmetry broken to S(U(N1)×U(N2)). By integrating the W particles, the effective action near the IR SU(Ni) conformal fixed points is seen to be a deformation of the Super Yang Mills theory by a non-renormalized, irrelevant, dimension 8 operator. The correction to the two-point function of the dilaton field dual...

متن کامل

Solvable relativistic hydrogenlike system in supersymmetric Yang-Mills theory.

The classical Kepler problem, as well as its quantum mechanical version, the hydrogen atom, enjoys a well-known hidden symmetry, the conservation of the Laplace-Runge-Lenz vector, which makes these problems superintegrable. Is there a relativistic quantum field theory extension that preserves this symmetry? In this Letter we show that the answer is positive: in the nonrelativistic limit, we ide...

متن کامل

ar X iv : h ep - t h / 99 02 18 4 v 1 2 5 Fe b 19 99 QUANTUM COSMOLOGY FROM N = 4 SUPER YANG - MILLS THEORY

We consider quantum N = 4 super Yang-Mills theory interacting in a covariant way with N = 4 conformal supergravity. The induced large N effective action for such a theory is calculated on a dilaton-gravitational background using the conformal anomaly found via AdS/CFT correspondence. Considering such an effective action as a quantum correction to the classical gravity action we study quantum co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002